3.140 \(\int (a+a \sec (c+d x))^{3/2} (e \sin (c+d x))^m \, dx\)

Optimal. Leaf size=106 \[ \frac {2 a e \sqrt {a \sec (c+d x)+a} (1-\cos (c+d x))^{\frac {1-m}{2}} (\cos (c+d x)+1)^{-m/2} F_1\left (-\frac {1}{2};\frac {1-m}{2},\frac {1}{2} (-m-2);\frac {1}{2};\cos (c+d x),-\cos (c+d x)\right ) (e \sin (c+d x))^{m-1}}{d} \]

[Out]

2*a*e*AppellF1(-1/2,-1-1/2*m,1/2-1/2*m,1/2,-cos(d*x+c),cos(d*x+c))*(1-cos(d*x+c))^(1/2-1/2*m)*(e*sin(d*x+c))^(
-1+m)*(a+a*sec(d*x+c))^(1/2)/d/((1+cos(d*x+c))^(1/2*m))

________________________________________________________________________________________

Rubi [A]  time = 0.37, antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3876, 2886, 135, 133} \[ \frac {2 a e \sqrt {a \sec (c+d x)+a} (1-\cos (c+d x))^{\frac {1-m}{2}} (\cos (c+d x)+1)^{-m/2} F_1\left (-\frac {1}{2};\frac {1-m}{2},\frac {1}{2} (-m-2);\frac {1}{2};\cos (c+d x),-\cos (c+d x)\right ) (e \sin (c+d x))^{m-1}}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(3/2)*(e*Sin[c + d*x])^m,x]

[Out]

(2*a*e*AppellF1[-1/2, (1 - m)/2, (-2 - m)/2, 1/2, Cos[c + d*x], -Cos[c + d*x]]*(1 - Cos[c + d*x])^((1 - m)/2)*
Sqrt[a + a*Sec[c + d*x]]*(e*Sin[c + d*x])^(-1 + m))/(d*(1 + Cos[c + d*x])^(m/2))

Rule 133

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(c^n*e^p*(b*x)^(m +
 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*x)/c), -((f*x)/e)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rule 135

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c^IntPart[n]*(c +
d*x)^FracPart[n])/(1 + (d*x)/c)^FracPart[n], Int[(b*x)^m*(1 + (d*x)/c)^n*(e + f*x)^p, x], x] /; FreeQ[{b, c, d
, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !GtQ[c, 0]

Rule 2886

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(g*(g*Cos[e + f*x])^(p - 1))/(f*(a + b*Sin[e + f*x])^((p - 1)/2)*(a - b*Sin[e +
 f*x])^((p - 1)/2)), Subst[Int[(d*x)^n*(a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]],
x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rule 3876

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(Sin[
e + f*x]^FracPart[m]*(a + b*Csc[e + f*x])^FracPart[m])/(b + a*Sin[e + f*x])^FracPart[m], Int[((g*Cos[e + f*x])
^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && (EqQ[a^2 - b^2, 0] ||
IntegersQ[2*m, p])

Rubi steps

\begin {align*} \int (a+a \sec (c+d x))^{3/2} (e \sin (c+d x))^m \, dx &=\frac {\left (\sqrt {-\cos (c+d x)} \sqrt {a+a \sec (c+d x)}\right ) \int \frac {(-a-a \cos (c+d x))^{3/2} (e \sin (c+d x))^m}{(-\cos (c+d x))^{3/2}} \, dx}{\sqrt {-a-a \cos (c+d x)}}\\ &=-\frac {\left (e \sqrt {-\cos (c+d x)} (-a-a \cos (c+d x))^{-\frac {1}{2}+\frac {1-m}{2}} (-a+a \cos (c+d x))^{\frac {1-m}{2}} \sqrt {a+a \sec (c+d x)} (e \sin (c+d x))^{-1+m}\right ) \operatorname {Subst}\left (\int \frac {(-a-a x)^{\frac {3}{2}+\frac {1}{2} (-1+m)} (-a+a x)^{\frac {1}{2} (-1+m)}}{(-x)^{3/2}} \, dx,x,\cos (c+d x)\right )}{d}\\ &=\frac {\left (a e \sqrt {-\cos (c+d x)} (1+\cos (c+d x))^{-m/2} (-a-a \cos (c+d x))^{-\frac {1}{2}+\frac {1-m}{2}+\frac {m}{2}} (-a+a \cos (c+d x))^{\frac {1-m}{2}} \sqrt {a+a \sec (c+d x)} (e \sin (c+d x))^{-1+m}\right ) \operatorname {Subst}\left (\int \frac {(1+x)^{\frac {3}{2}+\frac {1}{2} (-1+m)} (-a+a x)^{\frac {1}{2} (-1+m)}}{(-x)^{3/2}} \, dx,x,\cos (c+d x)\right )}{d}\\ &=\frac {\left (a e (1-\cos (c+d x))^{\frac {1}{2}-\frac {m}{2}} \sqrt {-\cos (c+d x)} (1+\cos (c+d x))^{-m/2} (-a-a \cos (c+d x))^{-\frac {1}{2}+\frac {1-m}{2}+\frac {m}{2}} (-a+a \cos (c+d x))^{-\frac {1}{2}+\frac {1-m}{2}+\frac {m}{2}} \sqrt {a+a \sec (c+d x)} (e \sin (c+d x))^{-1+m}\right ) \operatorname {Subst}\left (\int \frac {(1-x)^{\frac {1}{2} (-1+m)} (1+x)^{\frac {3}{2}+\frac {1}{2} (-1+m)}}{(-x)^{3/2}} \, dx,x,\cos (c+d x)\right )}{d}\\ &=\frac {2 a e F_1\left (-\frac {1}{2};\frac {1-m}{2},\frac {1}{2} (-2-m);\frac {1}{2};\cos (c+d x),-\cos (c+d x)\right ) (1-\cos (c+d x))^{\frac {1-m}{2}} (1+\cos (c+d x))^{-m/2} \sqrt {a+a \sec (c+d x)} (e \sin (c+d x))^{-1+m}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 9.75, size = 1243, normalized size = 11.73 \[ \text {result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sec[c + d*x])^(3/2)*(e*Sin[c + d*x])^m,x]

[Out]

(4*(3 + m)*(AppellF1[(1 + m)/2, -1/2, 1 + m, (3 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[(1
 + m)/2, 1/2, m, (3 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*AppellF1[(1 + m)/2, 3/2, m, (3 + m)/2
, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Cos[(c + d*x)/2]^3*(a*(1 + Sec[c + d*x]))^(3/2)*Sin[(c + d*x)/2]*(
e*Sin[c + d*x])^m)/(d*(1 + m)*(6*AppellF1[(1 + m)/2, 3/2, m, (3 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^
2] + 2*m*AppellF1[(1 + m)/2, 3/2, m, (3 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - 2*AppellF1[(3 + m)/
2, -1/2, 2 + m, (5 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - 2*m*AppellF1[(3 + m)/2, -1/2, 2 + m, (5
+ m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - AppellF1[(3 + m)/2, 1/2, 1 + m, (5 + m)/2, Tan[(c + d*x)/2]
^2, -Tan[(c + d*x)/2]^2] - 2*m*AppellF1[(3 + m)/2, 1/2, 1 + m, (5 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2
]^2] + AppellF1[(3 + m)/2, 3/2, m, (5 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - 4*m*AppellF1[(3 + m)/
2, 3/2, 1 + m, (5 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 6*AppellF1[(3 + m)/2, 5/2, m, (5 + m)/2,
Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 6*AppellF1[(1 + m)/2, 3/2, m, (3 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(
c + d*x)/2]^2]*Cos[c + d*x] + 2*m*AppellF1[(1 + m)/2, 3/2, m, (3 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]
^2]*Cos[c + d*x] + 2*AppellF1[(3 + m)/2, -1/2, 2 + m, (5 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[
c + d*x] + 2*m*AppellF1[(3 + m)/2, -1/2, 2 + m, (5 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[c + d*
x] + AppellF1[(3 + m)/2, 1/2, 1 + m, (5 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[c + d*x] + 2*m*Ap
pellF1[(3 + m)/2, 1/2, 1 + m, (5 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[c + d*x] - AppellF1[(3 +
 m)/2, 3/2, m, (5 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[c + d*x] + 4*m*AppellF1[(3 + m)/2, 3/2,
 1 + m, (5 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[c + d*x] - 6*AppellF1[(3 + m)/2, 5/2, m, (5 +
m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[c + d*x] + (3 + m)*AppellF1[(1 + m)/2, -1/2, 1 + m, (3 + m)
/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(1 + Cos[c + d*x]) + (3 + m)*AppellF1[(1 + m)/2, 1/2, m, (3 + m)/
2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(1 + Cos[c + d*x])))

________________________________________________________________________________________

fricas [F]  time = 1.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \left (e \sin \left (d x + c\right )\right )^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(e*sin(d*x+c))^m,x, algorithm="fricas")

[Out]

integral((a*sec(d*x + c) + a)^(3/2)*(e*sin(d*x + c))^m, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \left (e \sin \left (d x + c\right )\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(e*sin(d*x+c))^m,x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^(3/2)*(e*sin(d*x + c))^m, x)

________________________________________________________________________________________

maple [F]  time = 1.17, size = 0, normalized size = 0.00 \[ \int \left (a +a \sec \left (d x +c \right )\right )^{\frac {3}{2}} \left (e \sin \left (d x +c \right )\right )^{m}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)*(e*sin(d*x+c))^m,x)

[Out]

int((a+a*sec(d*x+c))^(3/2)*(e*sin(d*x+c))^m,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \left (e \sin \left (d x + c\right )\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(e*sin(d*x+c))^m,x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(3/2)*(e*sin(d*x + c))^m, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (e\,\sin \left (c+d\,x\right )\right )}^m\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sin(c + d*x))^m*(a + a/cos(c + d*x))^(3/2),x)

[Out]

int((e*sin(c + d*x))^m*(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)*(e*sin(d*x+c))**m,x)

[Out]

Timed out

________________________________________________________________________________________